On the automorphism ring of division algebras
نویسندگان
چکیده
منابع مشابه
the structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولDivision Algebras with an Anti-automorphism but with No Involution
In this note we give examples of division rings which posses an anti-automorphism but no involution. The motivation for such examples comes from geometry. If D is a division ring and V a finite-dimensional right D-vector space of dimension ≥ 3, then the projective geometry P(V ) has a duality (resp. polarity) if and only if D has an anti-automorphism (resp. involution) [2, p. 97, p. 111]. Thus,...
متن کاملOn normalizers of maximal subfields of division algebras
Here, we investigate a conjecture posed by Amiri and Ariannejad claiming that if every maximal subfield of a division ring $D$ has trivial normalizer, then $D$ is commutative. Using Amitsur classification of finite subgroups of division rings, it is essentially shown that if $D$ is finite dimensional over its center then it contains a maximal subfield with non-trivial normalize...
متن کاملOn the Ring Isomorphism & Automorphism Problems
We study the complexity of the isomorphism and automorphism problems for finite rings with unity. We show that both integer factorization and graph isomorphism reduce to the problem of counting automorphisms of rings. The problem is shown to be in the complexity class AM ∩ coAM and hence is not NP-complete unless the polynomial hierarchy collapses. Integer factorization also reduces to the prob...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kodai Mathematical Journal
سال: 1966
ISSN: 0386-5991
DOI: 10.2996/kmj/1138845283